- Home
- Standard 12
- Mathematics
If $a, b, c$ are non-zero real numbers and if the system of equations $(a - 1 )x = y + z,$ $(b - 1 )y = z + x ,$ $(c - 1 )z= x + y,$ has a non-trivial solution, then $ab + bc + ca$ equals
$a + b + c$
$abc$
$1$
$-1$
Solution
Given system of equationa be written as
$\left( {a – 1} \right)x – y – z = 0$
$ – x + \left( {b – 1} \right)y – z = 0$
$ – x – y + \left( {c – 1} \right)z = 0$
For non-trivial solution, we have
$\begin{array}{*{20}{c}}
{a – 1}&{ – 1}&{ – 1}\\
{ – 1}&{b – 1}&{ – 1}\\
{ – 1}&{ – 1}&{c – 1}
\end{array} = 0$
${R_2} \to {R_2} – {R_3}$
$\begin{array}{*{20}{c}}
{a – 1}&{ – 1}&{ – 1}\\
0&b&{ – c}\\
{ – 1}&{ – 1}&{c – 1}
\end{array} = 0$
${C_2} \to {C_2} – {C_3}$
$\begin{array}{*{20}{c}}
{a – 1}&0&{ – 1}\\
0&{b + c}&{ – c}\\
{ – 1}&{ – c}&{c – 1}
\end{array} = 0$
Apply, ${R_3} \to {R_3} – {R_1}$
$\begin{array}{*{20}{c}}
{a – 1}&0&{ – 1}\\
0&{b + c}&{ – c}\\
{ – 1}&{ – c}&c
\end{array} = 0$
$ \Rightarrow \left( {a – 1} \right)\left[ {bc + {c^2} – {c^2}} \right] – 1\left[ {a\left( {b + c} \right)} \right] = 0$
$ \Rightarrow \left( {a – 1} \right)\left[ {bc} \right] – ab – ac = 0$
$ \Rightarrow abc – bc – ab – ac = 0$
$ \Rightarrow ab + bc + ca = abc$