3 and 4 .Determinants and Matrices
hard

If $a, b, c$ are non-zero real numbers and if the system of equations $(a - 1 )x = y + z,$  $(b - 1 )y = z + x ,$ $(c - 1 )z= x + y,$ has a non-trivial solution, then $ab + bc + ca$ equals

A

 $a + b + c$

B

$abc$

C

$1$

D

$-1$

(JEE MAIN-2014)

Solution

Given system of equationa be written as

$\left( {a – 1} \right)x – y – z = 0$

$ – x + \left( {b – 1} \right)y – z = 0$

$ – x – y + \left( {c – 1} \right)z = 0$

For non-trivial solution, we have

$\begin{array}{*{20}{c}}
{a – 1}&{ – 1}&{ – 1}\\
{ – 1}&{b – 1}&{ – 1}\\
{ – 1}&{ – 1}&{c – 1}
\end{array} = 0$

${R_2} \to {R_2} – {R_3}$

$\begin{array}{*{20}{c}}
{a – 1}&{ – 1}&{ – 1}\\
0&b&{ – c}\\
{ – 1}&{ – 1}&{c – 1}
\end{array} = 0$

${C_2} \to {C_2} – {C_3}$

$\begin{array}{*{20}{c}}
{a – 1}&0&{ – 1}\\
0&{b + c}&{ – c}\\
{ – 1}&{ – c}&{c – 1}
\end{array} = 0$

Apply, ${R_3} \to {R_3} – {R_1}$

$\begin{array}{*{20}{c}}
{a – 1}&0&{ – 1}\\
0&{b + c}&{ – c}\\
{ – 1}&{ – c}&c
\end{array} = 0$

$ \Rightarrow \left( {a – 1} \right)\left[ {bc + {c^2} – {c^2}} \right] – 1\left[ {a\left( {b + c} \right)} \right] = 0$

$ \Rightarrow \left( {a – 1} \right)\left[ {bc} \right] – ab – ac = 0$

$ \Rightarrow abc – bc – ab – ac = 0$

$ \Rightarrow ab + bc + ca = abc$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.