If the system of equations, $a^2 x - ay = 1 - a$ & $bx + (3 - 2b) y = 3 + a$ possess a unique solution $x = 1, y = 1$ then :
$a = 1 ; b = - 1$
$a = - 1 , b = 1$
$a = 0 , b = 0$
none
Evaluate $\Delta=\left|\begin{array}{lll}3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3\end{array}\right|$
Let $k_1$, $k_2$ be the maximum and minimum values of $k$ for which the system of equations given by
$x + ky = 1$ ; $kx + y = 2$; $x + y = k$ are consistent then $k_1^2 + k_2^2$ is equal to
The system of equations $x + y + z = 6$, $x + 2y + 3z = 10,x + 2y + \lambda z = \mu $, has no solution for
If ${\Delta _1} = \left| {\,\begin{array}{*{20}{c}}x&b&b\\a&x&b\\a&a&x\end{array}\,} \right|$ and ${\Delta _2} = \left| {\,\begin{array}{*{20}{c}}x&b\\a&x\end{array}\,} \right|$ are the given determinants, then
The value of $\lambda $ for which the system of equations $2x - y - z = 12,$ $x - 2y + z = - 4,$ $x + y + \lambda z = 4$ has no solution is