यदि $a, b, c$ शून्येतर वास्तविक संख्याएँ हैं तथा यदि समीकरण निकाय $(a-1) x=y+z$; $(b-1) y=z+x$; $(c-1) z=x+y$ का एक अतुच्छ हल है, तो $a b+b c+c a$ बराबर है
$a + b + c$
$abc$
$1$
$-1$
यदि $\omega $ इकाई का घनमूल हो व $\Delta = \left| {\begin{array}{*{20}{c}}1&{2\omega }\\\omega &{{\omega ^2}}\end{array}} \right|$, तो ${\Delta ^2}$ =
यदि $a > 0$ और $a{x^2} + 2bx + c$ का विविक्तिकर ऋणात्मक है, तब $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ का मान होगा
माना एक $A.P.$ के किसी भी तीन भिन्न क्रमागत पदों $\mathrm{a}, \mathrm{b}, \mathrm{c}$ के लिए रेखाएं $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ एक बिंदु $\mathrm{P}$ पर संगामी हैं तथा बिंदु $\mathrm{Q}(\alpha, \beta)$ के लिए समीकरण निकांय $x+y+z=6,2 x+5 y+\alpha z=\beta$ तथा $\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=4$, के अंतंत हल है। तो $(\mathrm{PQ})^2$ बराबर है ..........|
$\lambda$ के उन भिन्न मानों का योग, जिनके लिए समीकरण निकाय
$(\lambda-1) x +(3 \lambda+1) y +2 \lambda z =0$
$(\lambda-1) x +(4 \lambda-2) y +(\lambda+3) z =0$
$2 x +(3 \lambda+1) y +3(\lambda-1) z =0$ के शून्येतर (non-zero) हल हैं, है
यदि $\left| {\,\begin{array}{*{20}{c}}{x + 1}&1&1\\2&{x + 2}&2\\3&3&{x + 3}\end{array}\,} \right| = 0,$ तो $x$ का मान होगा