- Home
- Standard 12
- Mathematics
જો $a, b, c$ એ વિષમબાજુ ત્રિકોણની બાજુઓ હોય તો $\left| \begin{array}{*{20}{c}}
a&b&c\\
b&c&a\\
c&a&b
\end{array} \right|$ એ . . .
અનૃણ
ઋણ
ધન
ધન નથી
Solution
$\left| {\begin{array}{*{20}{c}}
a&b&c\\
b&c&a\\
c&a&b
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
{a + b + c}&{a + b + c}&{a + b + c}\\
b&c&a\\
c&a&b
\end{array}} \right|$
$ = \left( {a + b + c} \right)\begin{array}{*{20}{c}}
1&1&1\\
b&c&a\\
c&a&b
\end{array}$
$ = \left( {a + b + c} \right)\begin{array}{*{20}{c}}
0&0&0\\
{b – c}&{c – a}&a\\
{c – a}&{a – b}&b
\end{array}$
$ = \left( {a + b + c} \right)\left[ {ab + bc + ca – {a^2} – {b^2} – {c^2}} \right]$
$ = – \left( {a + b + c} \right)\left[ {{{\left( {a – b} \right)}^2} + {{\left( {b – c} \right)}^2} + {{\left( {c – a} \right)}^2}} \right]$
Since $a,b,c$ are sides of $a$ scalene triangle, therfore at least two of the $a,b,c,$ will be unqual.
$\therefore {\left( {a – b} \right)^2} + {\left( {b – c} \right)^2} + {\left( {c – a} \right)^2} > 0$
Also $a + b + c > 0$
$\therefore – \left( {a + b + c} \right)\left[ {{{\left( {a – b} \right)}^2} + {{\left( {b – c} \right)}^2} + {{\left( {c – a} \right)}^2}} \right] < 0$