જો સમીકરણ સંહતિ $x+y+z=6 \,; \,2 x+5 y+\alpha z=\beta \,; \, x+2 y+3 z=14$ એ અનંત ઉકેલ ધરાવે છે તો $\alpha+\beta$ ની કિમંત મેળવો.
$8$
$36$
$44$
$48$
જો સમીકરણ સંહતી $\alpha x+y+z=5, x+2 y+$ $3 z=4, x+3 y+5 z=\beta$ને અસંખ્ય ઉકેલો હોય તો,ક્રમયુક્ત જોડ $(\alpha, \beta)=\dots\dots\dots\dots$
જો $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$ હોય, તો $x$ નું મૂલ્ય શોધો.
કોઈ $\alpha, \beta \in R$ માટે નીચેની સમીકરણ સંહતિ ધ્યાને લો. $\alpha x+2 y+z=1$ ; $2 \alpha x+3 y+z=1$ ; $3 x+\alpha y+2 z=\beta$ ; તો નીચેના પૈકી ક્યુ સાચું નથી ?
જો $a,b,c$ અને $d$ એ સંકર સંખ્યા હોય , તો નિશ્રાયક $\Delta = \left| {\,\begin{array}{*{20}{c}}2&{a + b + c + d}&{ab + cd}\\{a + b + c + d}&{2(a + b)(c + d)}&{ab(c + d) + cd(a + b)}\\{ab + cd}&{ab(c + d) + cd(a + d)}&{2abcd}\end{array}} \right|$ એ. . . .. પર આધારિત છે.
સમીકરણની સંહતિ $x + y + z = \lambda ,$ $5x - y + \mu z = 10$, $2x + 3y - z = 6$ ને એકાકી ઉકેલ ધરાવે તેનો આધાર . . . પર છે.