જો $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\b&c&{b + c}\\{a + b}&{b + c}&0\end{array}\,} \right| = 0$; તો $a,b,c$ એ .. . . શ્રેણીમાં છે .
સમાંતર
સમગુણોતર
સ્વરિત
એકપણ નહી.
જો $a,b,c$ ધન અને અસમાન હોય , તો નિશ્રાયક $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|$ ની કિમત . . .. .
જેના માટે $\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$ થાય તેવી $\alpha$ ની કિંમત..................... અંતરાલમાં આવે છે.
જો $\omega $ એ એકનું ઘનમૂળ હોય તો સમીકરણ $\left| {\begin{array}{*{20}{c}}
{x + 2}&\omega &{{\omega ^2}} \\
\omega &{x + 1 + {\omega ^2}}&1 \\
{{\omega ^2}}&1&{x + 1 + \omega }
\end{array}} \right| = 0$ નું બીજ મેળવો.
ધન સંખ્યાઓ $x,y$ અને $z$ માટે નિશ્રાયક $\left| {\,\begin{array}{*{20}{c}}1&{{{\log }_x}y}&{{{\log }_x}z}\\{{{\log }_y}x}&1&{{{\log }_y}z}\\{{{\log }_z}x}&{{{\log }_z}y}&1\end{array}\,} \right|$ ની કિમત મેળવો.
$\left|\begin{array}{rr}2 & 4 \\ -1 & 2\end{array}\right|$ નું મૂલ્ય શોધો.