જો $\left| {\,\begin{array}{*{20}{c}}{3x - 8}&3&3\\3&{3x - 8}&3\\3&3&{3x - 8}\end{array}\,} \right| = 0,$ તો $x$ ની કિમત મેળવો.
$0, 2/3$
$2/3, 11/3$
$1/2, 1$
$11/3, 1$
$\lambda$ અને $\mu$ ની અનુક્રમે ............. કિમતો માટે સુરેખ સમીકરણ સંહિતા
$x+y+z=2$
$x+2 y+3 z=5$
$x+3 y+\lambda z=\mu$
ને અનંત ઉકેલો મળે
ધારો કે સુરેખ સમીકરણ સંહતિ $x +2 y + z =2$, $\alpha x +3 y - z =\alpha,-\alpha x + y +2 z =-\alpha$ સુસંગત નથી.તો $\alpha=\dots\dots\dots\dots$
જો $A = \left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,B = \left| {\,\begin{array}{*{20}{c}}1&1&1\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,C = \left| {\,\begin{array}{*{20}{c}}a&b&c\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,$ તો આપલે પૈકી ક્યો સંબંધ સાચો છે .
જો $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2\end{array}\right|=\frac{9}{8}(103 x+81)$, હોય,તો $\lambda$, $\frac{\lambda}{3}$ એ $.........$ સમીકરણના બીજ છે.
જો $D = \left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right|$ જયાં $x \ne 0,y \ne 0$ તો $D$ એ . . . . .