If $a, b, c \in R$ and $1$ is a root of equation $ax^2 + bx + c = 0$, then the curve y $= 4ax^2 + 3bx+ 2c, a \ne 0$ intersect $x-$ axis at

  • [AIEEE 2012]
  • A

    two distinct points whose coordinates are always rational numbers

  • B

    no point

  • C

    exactly two distinct points

  • D

    exactly one point

Similar Questions

Let $f(x)=a x^2+b x+c$, where $a, b, c$ are integers, Suppose $f(1)=0,40 < f(6) < 50,60 < f(7) < 70$ and $1000 t < f(50) < 1000(t+1)$ for some integer $t$. Then, the value of $t$ is

  • [KVPY 2011]

If $\alpha ,\beta,\gamma$ are the roots of equation $x^3 + 2x -5 = 0$ and if equation $x^3 + bx^2 + cx + d = 0$ has roots $2 \alpha + 1, 2 \beta + 1, 2 \gamma + 1$ , then value of $|b + c + d|$ is (where $b,c,d$ are coprime)-

Let $\mathrm{a}=\max _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ and $\beta=\min _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$

If $8 x^{2}+b x+c=0$ is a quadratic equation whose roots are $\alpha^{1 / 5}$ and $\beta^{1 / 5}$, then the value of $c-b$ is equal to:

  • [JEE MAIN 2021]

The sum of all the real values of $x$ satisfying the equation ${2^{\left( {x - 1} \right)\left( {{x^2} + 5x - 50} \right)}} = 1$  is

  • [JEE MAIN 2017]

Let $x, y, z$ be positive integers such that $HCF$ $(x, y, z)=1$ and $x^2+y^2=2 z^2$. Which of the following statements are true?

$I$. $4$ divides $x$ or $4$ divides $y$.

$II$. $3$ divides $x+y$ or $3$ divides $x-y$.

$III$. $5$ divides $z\left(x^2-y^2\right)$.

  • [KVPY 2017]