If $\alpha , \beta , \gamma$ are roots of equation $x^3 + qx -r = 0$ then the equation, whose roots are
$\left( {\beta \gamma + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha + \frac{1}{\beta }} \right),\,\left( {\alpha \beta + \frac{1}{\gamma }} \right)$
$(r + 1)x^3 -q(r + 1)x^2 -r^3 = 0$
$rx^3 -q(r + 1)x^2 -(r + 1)^3 = 0$
$x^3 + qx -r = 0$
None of these
If $x$ is real, then the maximum and minimum values of expression $\frac{{{x^2} + 14x + 9}}{{{x^2} + 2x + 3}}$ will be
The equation $e^{4 x}+8 e^{3 x}+13 e^{2 x}-8 e^x+1=0, x \in R$ has:
If $\alpha ,\beta$ are the roots of $x^2 -ax + b = 0$ and if $\alpha^n + \beta^n = V_n$, then -
If $x, y$ are real numbers such that $3^{(x / y)+1}-3^{(x / y)-1}=24$ then the value of $(x+y) /(x-y)$ is
If $\alpha , \beta$ and $\gamma$ are the roots of ${x^3} + 8 = 0$, then the equation whose roots are ${\alpha ^2},{\beta ^2}$ and ${\gamma ^2}$ is