If $z$ and $w$ are two complex numbers such that $|zw| = 1$ and $arg(z) -arg(w) =\frac {\pi }{2},$ then
$\bar zw\,\, = \,i$
$z\bar w\,\, = \,\frac{{ - 1 + i}}{{\sqrt 2 }}$
$z\bar w\,\, = \,\frac{{1 - i}}{{\sqrt 2 }}$
$\bar zw\,\, = - \,i$
The real value of $\theta$ for which the expression $\frac{{1 + i\,\cos \theta }}{{1 - 2i\cos \theta }}$ is a real number is $\left( {n \in I} \right)$
The solutions of equation in $z$, $| z |^2 -(z + \bar{z}) + i(z - \bar{z})$ + $2$ = $0$ are $(i = \sqrt{-1})$
If$z = \frac{{1 - i\sqrt 3 }}{{1 + i\sqrt 3 }},$then $arg(z) = $ ............. $^\circ$
Find the complex number z satisfying the equations $\left| {\frac{{z - 12}}{{z - 8i}}} \right| = \frac{5}{3},\left| {\frac{{z - 4}}{{z - 8}}} \right| = 1$
If ${z_1},{z_2} \in C$, then $amp\,\left( {\frac{{{{\rm{z}}_{\rm{1}}}}}{{{{{\rm{\bar z}}}_{\rm{2}}}}}} \right) = $