If $Arg(z)$ denotes principal argument of a complex number $z$, then the value of expression $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ is

  • A

    $0$

  • B

    $\frac{\pi }{2}$

  • C

    $\pi$

  • D

    $Arg$  $z$

Similar Questions

If ${z_1},{z_2},{z_3}$be three non-zero complex number, such that ${z_2} \ne {z_1},a = |{z_1}|,b = |{z_2}|$ and $c = |{z_3}|$ suppose that $\left| {\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}} \right| = 0$, then $arg\left( {\frac{{{z_3}}}{{{z_2}}}} \right)$ is equal to

Find the modulus and argument of the complex numbers:

$\frac{1+i}{1-i}$

If $|z|\, = 1$ and $\omega = \frac{{z - 1}}{{z + 1}}$ (where $z \ne - 1)$, then ${\mathop{\rm Re}\nolimits} (\omega )$ is

  • [IIT 2003]

If $z = 1 - \cos \alpha + i\sin \alpha $, then $amp \ z$=

The conjugate of complex number $\frac{{2 - 3i}}{{4 - i}},$ is