4-1.Complex numbers
hard

જો $z$ અને  $w$ સંકર સંખ્યા છે કે જેથી $|zw| = 1$ અને $arg(z) -arg(w) =\frac {\pi }{2},$ થાય તો ......... 

A

$\bar zw\,\, = \,i$

B

$z\bar w\,\, = \,\frac{{ - 1 + i}}{{\sqrt 2 }}$

C

$z\bar w\,\, = \,\frac{{1 - i}}{{\sqrt 2 }}$

D

$\bar zw\,\, =  - \,i$

(JEE MAIN-2019)

Solution

$|z| \cdot|w|=1 \quad z =$ $r e^{\left(\theta+\frac{\pi}{2}\right)} \text { and } w$ $=\frac{1}{r} e^{i \theta}$

$\bar{z} \cdot w$ $=e^{-i\left(\theta+\frac{\pi}{2}\right)} \cdot e^{i \theta} $ $=e^{-i\left(\frac{\pi}{2}\right)}=-i$

$\mathrm{z} \cdot \overline{\mathrm{w}}$ $=\mathrm{e}^{i\left(\theta+\frac{\pi}{2}\right)} \cdot \mathrm{e}^{-\mathrm{i} \theta}$ $=\mathrm{e}^{\mathrm{i}\left(\frac{\pi}{2}\right)}=\mathrm{i}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.