If ${z_1},{z_2}$ are two complex numbers such that $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right| = 1$ and $i{z_1} = k{z_2}$, where $k \in R$, then the angle between ${z_1} - {z_2}$ and ${z_1} + {z_2}$ is
${\tan ^{ - 1}}\left( {\frac{{2k}}{{{k^2} + 1}}} \right)$
${\tan ^{ - 1}}\left( {\frac{{2k}}{{1 - {k^2}}}} \right)$
-$2{\tan ^{ - 1}}k$
$2{\tan ^{ - 1}}k$
Let $z,w$be complex numbers such that $\overline z + i\overline w = 0$and $arg\,\,zw = \pi $. Then arg z equals
Let $S=\left\{Z \in C: \bar{z}=i\left(z^2+\operatorname{Re}(\bar{z})\right)\right\}$. Then $\sum_{z \in S}|z|^2$ is equal to
Let $z_1, z_2 \in C$ such that $| z_1 + z_2 |= \sqrt 3$ and $|z_1| = |z_2| = 1,$ then the value of $|z_1 - z_2|$ is
Let $z$ =${i^{2i}}$ , then $|z|$ is (where $i$ =$\sqrt { - 1}$ )
The maximum value of $|z|$ where z satisfies the condition $\left| {z + \frac{2}{z}} \right| = 2$ is