- Home
- Standard 11
- Physics
3-1.Vectors
normal
Vector $P =6 \hat{ i }+4 \sqrt{2} \hat{ j }+4 \sqrt{2} \hat{ k }$ makes angle from $z$-axis equal to
A$\cos ^{-1}\left(\frac{\sqrt{2}}{5}\right)$
B$\cos ^{-1}(2 \sqrt{2})$
C$\cos ^{-1}\left(\frac{2 \sqrt{2}}{5}\right)$
DNone of these
Solution
(c)
$\gamma=\cos ^{-1}\left(\frac{P_z}{P}\right)$
Here, $\quad P_z=4 \sqrt{2}$
$\text { and } \quad P=\sqrt{(6)^2+\left(4 \sqrt{2)^2}+\left(4 \sqrt{2)^2}\right.\right.}=10$
$\gamma=\cos ^{-1}\left(\frac{P_z}{P}\right)$
Here, $\quad P_z=4 \sqrt{2}$
$\text { and } \quad P=\sqrt{(6)^2+\left(4 \sqrt{2)^2}+\left(4 \sqrt{2)^2}\right.\right.}=10$
Standard 11
Physics
Similar Questions
If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.
Column $-I$ | Column $-II$ |
$(a)$ $\vec A \,.\,\,\vec B \, = \,\,0$ | $(i)$ $\theta = \,{0^o}$ |
$(b)$ $\vec A \,.\,\,\vec B \, = \,\,+8$ | $(ii)$ $\theta = \,{90^o}$ |
$(c)$ $\vec A \,.\,\,\vec B \, = \,\,4$ | $(iii)$ $\theta = \,{180^o}$ |
$(d)$ $\vec A \,.\,\,\vec B \, = \,\,-8$ | $(iv)$ $\theta = \,{60^o}$ |
medium