If $\theta$ is the angle between two vectors $A$ and $B$, then match the following two columns.
colum $I$ colum $II$
$(A)$ $A \cdot B =| A \times B |$ $(p)$ $\theta=90^{\circ}$
$(B)$ $A \cdot B = B ^2$ $(q)$ $\theta=0^{\circ}$ or $180^{\circ}$
$(C)$ $|A+B|=|A-B|$ $(r)$ $A=B$
$(D)$ $|A \times B|=A B$ $(s)$ None

  • A
    $( A \rightarrow s , B \rightarrow q , r , C \rightarrow p , D \rightarrow p )$
  • B
    $( A \rightarrow r , B \rightarrow q , s , C \rightarrow p , D \rightarrow p )$
  • C
    $( A \rightarrow p , B \rightarrow q , r , C \rightarrow p , D \rightarrow s )$
  • D
    $( A \rightarrow q , B \rightarrow s , r , C \rightarrow p , D \rightarrow p )$

Similar Questions

The angle made by the vector $\left( {\hat i\,\, + \;\,\hat j} \right)$ with $x-$ axis and $y$ axis is

Show that the scalar product of two vectors obeys the law of commutative.

The condition $( a \cdot b )^2=a^2 b^2$ is satisfied when

Angle between the vectors $(\hat i + \hat j)$ and $(\hat i - \hat k)$ is ........ $^o$

The two vectors $\vec A = -2\widehat i + \widehat j + 3\widehat k$ and $\vec B = 7\widehat i + 5\widehat j + 3\widehat k$ are :-