If $|\vec A \times \vec B| = \sqrt 3 \vec A.\vec B,$ then the value of$|\vec A + \vec B|$ is

  • [AIPMT 2004]
  • A

    ${\left( {{A^2} + {B^2} + \frac{{AB}}{{\sqrt 3 }}} \right)^{1/2}}$

  • B

    $A + B$

  • C

    ${({A^2} + {B^2} + \sqrt 3 AB)^{1/2}}$

  • D

    ${({A^2} + {B^2} + AB)^{1/2}}$

Similar Questions

When $\vec A.\vec B = - |A||B|,$ then

Find the scalar and vector products of two vectors. $a =(3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ and $b =(- 2 \hat{ i }+\hat{ j }- 3 \hat { k } )$

Consider a vector $\overrightarrow F = 4\hat i - 3\hat j.$ Another vector that is perpendicular to $\overrightarrow F $ is

Show that the area of the triangle contained between the vectors $a$ and $b$ is one half of the magnitude of $a \times b .$

If $\left| {\vec A } \right|\, = \,2$ and $\left| {\vec  B } \right|\, = \,4$ then match the relation in Column $-I$ with the angle $\theta $ between $\vec A$ and $\vec B$ in Column $-II$.

Column $-I$ Column $-II$
$(a)$ $\vec A \,.\,\,\vec B \, = \,\,0$ $(i)$ $\theta = \,{0^o}$
$(b)$ $\vec A \,.\,\,\vec B \, = \,\,+8$ $(ii)$ $\theta = \,{90^o}$
$(c)$ $\vec A \,.\,\,\vec B \, = \,\,4$ $(iii)$ $\theta = \,{180^o}$
$(d)$ $\vec A \,.\,\,\vec B \, = \,\,-8$ $(iv)$ $\theta = \,{60^o}$