If $C_{x} \equiv^{25} C_{x}$ and $\mathrm{C}_{0}+5 \cdot \mathrm{C}_{1}+9 \cdot \mathrm{C}_{2}+\ldots .+(101) \cdot \mathrm{C}_{25}=2^{25} \cdot \mathrm{k}$ then $\mathrm{k}$ is equal to

  • [JEE MAIN 2020]
  • A

    $42$

  • B

    $45$

  • C

    $51$

  • D

    $48$

Similar Questions

The value of $\sum\limits_{n = 1}^\infty {\frac{{^n{C_0} + ...{ + ^n}{C_n}}}{{^n{P_n}}}} $ is

The sum of coefficients of integral power of $x$ in the binomial expansion ${\left( {1 - 2\sqrt x } \right)^{50}}$ is :

  • [JEE MAIN 2015]

The number of terms in the expansion of $(1 +x)^{101}  (1 +x^2 - x)^{100}$ in powers of $x$ is

  • [JEE MAIN 2014]

Let $m, n \in N$ and $\operatorname{gcd}(2, n)=1$. If $30\left(\begin{array}{l}30 \\ 0\end{array}\right)+29\left(\begin{array}{l}30 \\ 1\end{array}\right)+\ldots+2\left(\begin{array}{l}30 \\ 28\end{array}\right)+1\left(\begin{array}{l}30 \\ 29\end{array}\right)= n .2^{ m }$ then $n + m$ is equal to (Here $\left.\left(\begin{array}{l} n \\ k \end{array}\right)={ }^{ n } C _{ k }\right)$

  • [JEE MAIN 2021]

If $\sum\limits_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum\limits_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$

Where $\alpha \in R$, then the value of $16 \alpha$ is equal to

  • [JEE MAIN 2022]