જો $C_{x} \equiv^{25} C_{x}$ અને $\mathrm{C}_{0}+5 \cdot \mathrm{C}_{1}+9 \cdot \mathrm{C}_{2}+\ldots .+(101) \cdot \mathrm{C}_{25}=2^{25} \cdot \mathrm{k}$ હોય તો  $\mathrm{k}$ મેળવો.

  • [JEE MAIN 2020]
  • A

    $42$

  • B

    $45$

  • C

    $51$

  • D

    $48$

Similar Questions

$(1-x)^{101}\left(x^{2}+x+1\right)^{100}$ નાં વિસ્તરણમાં $x^{256}$ નો સહગુણક મેળવો.

  • [JEE MAIN 2021]

જો $x + y = 1$, તો $\sum\limits_{r = 0}^n {{r^2}{\,^n}{C_r}{x^r}{y^{n - r}}} $ = . . .

ધારો કે  $\alpha=\sum_{k=0}^n\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$ અને  $\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$. છે. જો  $5 \alpha=6 \beta$, હોય તો  $n$=...........................

  • [JEE MAIN 2024]

જો ${(1 - 3x + 10{x^2})^n}$ વિસ્તરણમાં સહગુણકોનો સરવાળો $a$ છે અને ${(1 + {x^2})^n}$ વિસ્તરણમાં સહગુણકોનો સરવાળો $b$ હોય , તો . . . .

${C_0} - {C_1} + {C_2} - {C_3} + ..... + {( - 1)^n}{C_n}$ = . . .