જો $C_{x} \equiv^{25} C_{x}$ અને $\mathrm{C}_{0}+5 \cdot \mathrm{C}_{1}+9 \cdot \mathrm{C}_{2}+\ldots .+(101) \cdot \mathrm{C}_{25}=2^{25} \cdot \mathrm{k}$ હોય તો  $\mathrm{k}$ મેળવો.

  • [JEE MAIN 2020]
  • A

    $42$

  • B

    $45$

  • C

    $51$

  • D

    $48$

Similar Questions

$\frac{{{C_0}}}{1} + \frac{{{C_1}}}{2} + \frac{{{C_2}}}{3} + .... + \frac{{{C_n}}}{{n + 1}} = $

$\sum_{ r =0}^{6}\left({ }^{6} C _{ r }{ }^{-6} C _{6- r }\right)$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો $[ x ]$ એ મહતમ પૃણાંક વિધેય દર્શાવે છે . જો  $n \in N ,\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$, તો  $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો ${(x - 2y + 3z)^n}$ ના વિસ્તરણમાં પદની સંખ્યા $45$ હોય , તો $n= $. . .

$(1 + t^2)^{25} (1 + t^{25}) (1 + t^{40}) (1 + t^{45}) (1 + t^{47})$  ના વિસ્તરણમાં $t^{50}$ નો સહગુણક મેળવો