यदि $C _{ x } \equiv{ }^{25} C _{ x }$ तथा $C _{0}+5 \cdot C _{1}+9 \cdot C _{2}+\ldots+$ (101). $C _{25}=2^{25} \cdot k$, तो $k$ बराबर है

  • [JEE MAIN 2020]
  • A

    $42$

  • B

    $45$

  • C

    $51$

  • D

    $48$

Similar Questions

यदि ${(1 + x - 2{x^2})^6} = 1 + {a_1}x + {a_2}{x^2} + .... + {a_{12}}{x^{12}}$, तब व्यंजक ${a_2} + {a_4} + {a_6} + .... + {a_{12}}$ का मान है

यदि $\sum_{ r =1}^{10} r !\left( r ^{3}+6 r ^{2}+2 r +5\right)=\alpha(11 !)$ है, तो $\alpha$ का मान बराबर है ............ |

  • [JEE MAIN 2021]

यदि $n$ एक धनात्मक पूर्णांक है तथा ${C_k} = {\,^n}{C_k}$, तब ${\sum\limits_{k = 1}^n {{k^3}\left( {\frac{{{C_k}}}{{{C_{k - 1}}}}} \right)} ^2}$ =

$^n{C_0} - \frac{1}{2}{\,^n}{C_1} + \frac{1}{3}{\,^n}{C_2} - ...... + {( - 1)^n}\frac{{^n{C_n}}}{{n + 1}} = $

यदि ${(\alpha {x^2} - 2x + 1)^{35}}$ के प्रसार में गुणांकों का योग ${(x - \alpha y)^{35}}$ के प्रसार में गुणांकों के योग के बराबर हो, तब $\alpha $=