In the expansion of ${(1 + x)^5}$, the sum of the coefficient of the terms is
$80$
$16$
$32$
$64$
(c) Sum of the coefficients = ${(1 + 1)^5}$= $2^5$ $= 32.$
If $\sum\limits_{r = 0}^{25} {\left\{ {^{50}{C_r}.{\,^{50 – r}}{C_{25 – r}}} \right\} = K\left( {^{50}{C_{25}}} \right)} $, then $K$ is equal to
Let ${s_1} = \mathop \sum \limits_{j = 1}^{10} j\left( {j – 1} \right)\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;,$$\;{s_2} = \mathop \sum \limits_{j = 1}^{10} j\;\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;and,$${s_3} = \mathop \sum \limits_{j = 1}^{10} {j^2}\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;,\;$
Statement $-1$:${s_3} = 55 \times {2^9}$
Statement $-2$: ${s_1} = 90 \times {2^8}\;$ and ${s_2} = 10 \times {2^8}$
If $\sum\limits_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum\limits_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$
Where $\alpha \in R$, then the value of $16 \alpha$ is equal to
Let ${\left( {1 + x} \right)^{10}} = \sum\limits_{r = 0}^{10} {{C_r}{x^r}} $ and ${\left( {1 + x} \right)^7} = \sum\limits_{r = 0}^7 {{d_r}{x^r}} $ . If $P = \sum\limits_{r = 0}^5 {{C_{2r}}} $ and $Q = \sum\limits_{r = 0}^3 {{d_{2r + 1}}} $ , then $\frac{P}{{2Q}}$ is equal to
The value of $\sum_{ r =0}^{6}\left({ }^{6} C _{ r }{ }^{-6} C _{6- r }\right)$ is equal to :
Confusing about what to choose? Our team will schedule a demo shortly.