यदि $a, b, c$ धनात्मक और भिन्न हैं तो दिखाइए कि सारणिक
$\Delta=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ का मान ऋणात्मक है।
Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$ to the given determinant, we get
$\Delta = \left| {\begin{array}{*{20}{l}}
{a + b + c}&b&c \\
{a + b + c}&c&a \\
{a + b + c}&a&b
\end{array}} \right| = (a + b + c)\left| {\begin{array}{*{20}{c}}
1&b&c \\
1&c&a \\
1&a&b
\end{array}} \right|$
${ = (a + b + c)\left| {\begin{array}{*{20}{c}}
1&b&c \\
0&{c - b}&{a - c} \\
0&{a - b}&{b - c}
\end{array}} \right|}$ ${{\text{(Applying }}{{\text{R}}_2} \to {{\text{R}}_2} - {{\text{R}}_1},{\text{ and }}{{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_1})}$
$ = (a + b + c)[(c - b)(b - c) - (a - c)(a - b)]$ ${\text{(Expanding along }}{{\text{C}}_1}{\text{ ) }}$
$ = (a + b + c)\left( { - {a^2} - {b^2} - {c^2} + ab + bc + ca} \right)$
which is negative (since $\left.a+b+c>0 \text { and }(a-b)^{2}+(b-c)^{2}+(c-a)^{2}>0\right)$
यदि $\Delta=\left|\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ 2 x-3 & 3 x-4 & 4 x-5 \\ 3 x-5 & 5 x-8 & 10 x-17\end{array}\right|=A x^{3}+B x^{2}$ $+ Cx + D$ है, तो $B + C$ बराबर है
सिद्ध कीजिए कि $\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|=4 a b c$
यदि $a, b, c$ समांतर श्रेढ़ी में हों तो सारणिक
$\left|\begin{array}{lll}x+2 & x+3 & x+2 a \\ x+3 & x+4 & x+2 b \\ x+4 & x+5 & x+2 c\end{array}\right|$ का मान होगा|:
सारणिक $\left| {\,\begin{array}{*{20}{c}}4&{ - 6}&1\\{ - 1}&{ - 1}&1\\{ - 4}&{11}&{ - 1\,}\end{array}} \right|$ का मान है
यदि $a, b$ और $ c$ तीन अशून्य वास्तविक संख्यायें हैं, तो $\Delta = \left| {\,\begin{array}{*{20}{c}}{{b^2}{c^2}}&{bc}&{b + c}\\{{c^2}{a^2}}&{ca}&{c + a}\\{{a^2}{b^2}}&{ab}&{a + b}\end{array}\,} \right| $ =