- Home
- Standard 12
- Mathematics
यदि $A =\left[\begin{array}{rr}8 & 0 \\ 4 & -2 \\ 3 & 6\end{array}\right], B =\left[\begin{array}{cc}2 & -2 \\ 4 & 2 \\ -5 & 1\end{array}\right]$ तथा $2 A +3 X =5 B$ दिया हो तो आव्यूह $X$ ज्ञात कीजिए
$\left[ {\begin{array}{*{20}{c}}
{ 2}&{\frac{{ - 10}}{3}} \\
4&{\frac{{14}}{3}} \\
{\frac{{ - 31}}{3}}&{\frac{{ 7}}{3}}
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}
{ 2}&{\frac{{ 10}}{3}} \\
4&{\frac{{14}}{3}} \\
{\frac{{ - 31}}{3}}&{\frac{{ 7}}{3}}
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}
{ - 2}&{\frac{{ 10}}{3}} \\
4&{\frac{{-14}}{3}} \\
{\frac{{ - 31}}{3}}&{\frac{{ 7}}{3}}
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}
{ - 2}&{\frac{{ - 10}}{3}} \\
4&{\frac{{14}}{3}} \\
{\frac{{ - 31}}{3}}&{\frac{{ - 7}}{3}}
\end{array}} \right]$
Solution
We have $2A+3X=5 B$
or $2A+3X-2A=5B-2A$
or $2 A-2A+3X=5B-2A$ $($ Matrix addition is commutative $)$
or $O+3 X=5B-2 A$ $(-2A$ is the additive inverse of $2A)$
or $3 \mathrm{X}=5 \mathrm{B}-2 \mathrm{A}$ ( $O$ is the additive identity)
or $X=\frac{1}{3}(5 B-2 A)$
or ${\text{X}} = $ $\frac{1}{3}\left( {5\left[ {\begin{array}{*{20}{c}}
2&{ – 2} \\
4&2 \\
{ – 5}&1
\end{array}} \right] – 2\left[ {\begin{array}{*{20}{l}}
8&0 \\
4&{ – 2} \\
3&6
\end{array}} \right]} \right)$ $ = \frac{1}{3}\left( {\left[ {\begin{array}{*{20}{c}}
{10}&{ – 10} \\
{20}&{10} \\
{ – 25}&5
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{ – 16}&0 \\
{ – 8}&4 \\
{ – 6}&{ – 12}
\end{array}} \right]} \right)$
$ = \frac{1}{3}\left[ {\begin{array}{*{20}{c}}
{10 – 16}&{ – 10 + 0} \\
{20 – 8}&{10 + 4} \\
{ – 25 – 6}&{5 – 12}
\end{array}} \right]$
$ = \frac{1}{3}\left[ {\begin{array}{*{20}{c}}
{ – 6}&{ – 10} \\
{12}&{14} \\
{ – 31}&{ – 7}
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}}
{ – 2}&{\frac{{ – 10}}{3}} \\
4&{\frac{{14}}{3}} \\
{\frac{{ – 31}}{3}}&{\frac{{ – 7}}{3}}
\end{array}} \right]$