3 and 4 .Determinants and Matrices
easy

यदि आव्यूह $\left[ {\begin{array}{*{20}{c}}1&2&3\\4&5&6\\3&\lambda &5\end{array}} \right]$ एक व्युत्क्रमणीय आव्यूह हो, तो $\lambda $ का मान नहीं हो सकता है      

A

$1$

B

$2$

C

$3$

D

$4$

Solution

आव्यूह $\left[ {\begin{array}{*{20}{c}}1&2&3\\4&5&6\\3&\lambda &5\end{array}} \right]$व्युत्क्रमणीय आव्यूह होगा,             

यदि $\left| {\,\begin{array}{*{20}{c}}1&2&3\\4&5&6\\3&\lambda &5\end{array}\,} \right| \ne 0$             

$\Rightarrow$ $\,1(25 – 6\lambda ) – 2(20 – 18) + 3(4\lambda  – 15) \ne 0$         

$\Rightarrow$ $25 – 6\lambda  – 4 + 12\lambda  – 45 \ne 0$      $6\lambda  – 24 \ne 0$

$\Rightarrow$ $\lambda  \ne 4$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.