दी गई घटनाएँ $A$ और $B$ ऐसी हैं $,$ जहाँ $P ( A )=\frac{1}{4}, P ( B )=\frac{1}{2}$ और $P ( A \cap B )=\frac{1}{8}$ तब $P ( A -$ नहीं और $B$ -नहीं $)$ ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that, $\mathrm{P}(\mathrm{A}) \frac{1}{4}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$

$\mathrm{P}$ $($ not on $\mathrm{A} $ and not on $\mathrm{B})$ $=\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B^{\prime}}\right)$

$\mathrm{P}$ $($ not on $\mathrm{A} $ and not on $\mathrm{B})$ $=\mathrm{P}\left((\mathrm{A}^{\prime} \cup \mathrm{B})\right)$    $\left[A^{\prime} \cap B^{\prime}=(A \cup B)^{\prime}\right]$

$=1-P(A \cup B)$

$=1-[P(A)+P(B)-P(A \cap B)]$

$=1-\frac{5}{8}$

$=\frac{3}{8}$

Similar Questions

दो घटनाओं $A$ और $B$ को परस्पर स्वतंत्र कहते हैं, यदि

दो पासे स्वतंत्र रुप से फेंके जाते हैं। माना पहले पासे पर प्रकट होने वाली संख्या के दूसरे पासे पर प्रकट होने वाली संख्या से कम होने की घटना $\mathrm{A}$ है, पहले पासे पर सम संख्या तथा दसरे पासे पर विषम संख्या के प्रकट होने की घटना $\mathrm{B}$ है और पहले पासे पर विषम संख्या तथा दूसरे पासे पर सम संख्या के प्रकट होने की घटना $\mathrm{C}$ है। तो

  • [JEE MAIN 2023]

$A$ व $B$ दो स्वतंत्र घटनायें हैं। दोनों $A$ व $B$ के घटने की प्रायिकता $\frac{1}{6}$ है तथा उनमें से किसी के भी न घटने की प्रायिकता $\frac{1}{3}$ हैं, तो दोनों घटनाओं की प्रायिकतायें क्रमश: हैं

एक ताश की गड्डी में से एक ताश का पत्ता यदृच्छया निकाला जाता है। इस पत्ते के लाल अथवा बेगम होने की प्रायिकता है

किसी घटना के प्रतिकूल संयोगानुपात $5 : 2$ हैं एवं एक अन्य घटना के अनुकूल संयोगानुपात $6 : 5$ हैं। यदि दोनों घटनायें स्वतंत्र हों, तो इन घटनाओं में से कम से कम एक घटना के घटित होने की प्रायिकता है