If $f: R \rightarrow R$ be given by $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}},$ then $fof(x)$ is ..........

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$f : R \rightarrow R$ be given as $f ( x )=\left(3-x^{3}\right)^{\frac{1}{3}}$

$\therefore fof ( x )= f ( f ( x ))=f\left(3-x^{3}\right)^{\frac{1}{3}}$ $=\left[3-\left(\left(3-x^{3}\right)^{\frac{1}{3}}\right)^{3}\right]^{\frac{1}{3}}$

$=\left[3-\left(3-x^{3}\right)\right]^{\frac{1}{3}}=\left(x^{3}\right)^{\frac{1}{3}}$

$\therefore fof(x)=x$

The correct answer is $D$.

Similar Questions

Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ given by $f(1)=a, \,f(2)=b$ and $f(3)=c .$ Find $f^{-1}$ and show that $\left(f^{-1}\right)^{-1}=f$.

Let $f:\left[ {4,\infty } \right) \to \left[ {1,\infty } \right)$ be a function defined by $f\left( x \right) = {5^{x\left( {x - 4} \right)}}$  then $f^{-1}(x)$  is

If $f(x) = 3x - 5$, then ${f^{ - 1}}(x)$

  • [IIT 1998]

Let $S=\{a, b, c\}$ and $T=\{1,2,3\} .$ Find $F^{-1}$ of the following functions $F$ from $S$ to $T$. if it exists. $F =\{( a , 2)\,,(b , 1),\,( c , 1)\}$

The inverse of $y=5^{\log x}$ is

  • [JEE MAIN 2021]