- Home
- Standard 11
- Mathematics
4-1.Complex numbers
medium
જો $z_{1}=2-i, z_{2}=1+i,$ તો $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$ શોધો.
A
$\sqrt{2}$
B
$\sqrt{2}$
C
$\sqrt{2}$
D
$\sqrt{2}$
Solution
$z_{1}=2-i, z_{2}=1+i$
$\therefore\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|=\left|\frac{(2-i)+(1+i)+1}{(2-i)-(1+i)+1}\right|$
$=\left|\frac{4}{2-2 i}\right|=\left|\frac{4}{2(1-i)}\right|$
$=\left|\frac{2}{1-i} \times \frac{1+i}{1+i}\right|=\left|\frac{2(1+i)}{\left(1^{2}-i^{2}\right)}\right|$
$=\left|\frac{2(1+i)}{1+1}\right| \quad\left[i^{2}=-1\right]$
$=\left|\frac{2(1+i)}{2}\right|$
$=|1+i|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
Thus, the value of $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$ is $\sqrt{2}$
Standard 11
Mathematics