If $a$ and $b$ are distinct integers, prove that $a-b$ is a factor of $a^{n}-b^{n}$, whenever $n$ is a positive integer.
In order to prove that $(a-b)$ is a factor of $\left(a^{n}-b^{n}\right)$, it has to be proved that $a^{n}-b^{n}=k(a-b),$ where $k$ is some natural number
It can be written that, $a=a-b+b$
$\therefore a^{n}=(a-b+b)^{n}=[(a-b)+b]^{n}$
$ = {\,^n}{C_0}{(a - b)^n} + {\,^n}{C_1}{(a - b)^{n - 1}}b + \ldots + {\,^n}{C_{n - 1}}(a - b){b^{n - 1}} + {\,^n}{C_n}{b^n}$
$ = {(a - b)^n} + {\,^n}{C_1}{(a - b)^{n - 1}}b + \ldots + {\,^n}{C_{n - 1}}(a - b){b^{n - 1}} + {b^n}$
$\Rightarrow a^{n}-b^{n}=(a-b)\left[(a-b)^{n-1}+^{n} C_{1}(a-b)^{n-2} b+\ldots+^{n} C_{n-1} b^{n-1}\right]$
$\Rightarrow a^{n}-b^{n}=k(a-b)$
Where, $k = \left[ {{{(a - b)}^{n - 1}} + {\,^n}{C_1}{{(a - b)}^{n - 2}}b + \ldots + {\,^n}{C_{n - 1}}{b^{n - 1}}} \right]$ is a natural mumber
This shows that $(a-b)$ is a factor of $\left(a^{n}-b^{n}\right)$, where $n$ is a positive integer.
In the expansion of $(1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0$, the sum of the coefficient of $x^3$ and $x^{-13}$ is equal to
Let $0 \leq \mathrm{r} \leq \mathrm{n}$. If ${ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}+1}:{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}:{ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}-1}=55: 35: 21$, then $2 n+5 r$ is equal to:
If the coefficients of ${T_r},\,{T_{r + 1}},\,{T_{r + 2}}$ terms of ${(1 + x)^{14}}$ are in $A.P.$, then $r =$
If ${\left( {2 + \frac{x}{3}} \right)^{55}}$ is expanded in the ascending powers of $x$ and the coefficients of powers of $x$ in two consecutive terms of the expansion are equal, then these terms are
The total number or irrational terms in the binomial expansion of $\left( {{7^{1/5}} - {3^{1/10}}} \right)^{60}$ is