If $a$ and $b$ are distinct integers, prove that $a-b$ is a factor of $a^{n}-b^{n}$, whenever $n$ is a positive integer.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In order to prove that $(a-b)$ is a factor of $\left(a^{n}-b^{n}\right)$, it has to be proved that $a^{n}-b^{n}=k(a-b),$ where $k$ is some natural number

It can be written that, $a=a-b+b$

$\therefore a^{n}=(a-b+b)^{n}=[(a-b)+b]^{n}$

$ = {\,^n}{C_0}{(a - b)^n} + {\,^n}{C_1}{(a - b)^{n - 1}}b +  \ldots  + {\,^n}{C_{n - 1}}(a - b){b^{n - 1}} + {\,^n}{C_n}{b^n}$

$ = {(a - b)^n} + {\,^n}{C_1}{(a - b)^{n - 1}}b +  \ldots  + {\,^n}{C_{n - 1}}(a - b){b^{n - 1}} + {b^n}$

$\Rightarrow a^{n}-b^{n}=(a-b)\left[(a-b)^{n-1}+^{n} C_{1}(a-b)^{n-2} b+\ldots+^{n} C_{n-1} b^{n-1}\right]$

$\Rightarrow a^{n}-b^{n}=k(a-b)$

Where, $k = \left[ {{{(a - b)}^{n - 1}} + {\,^n}{C_1}{{(a - b)}^{n - 2}}b +  \ldots  + {\,^n}{C_{n - 1}}{b^{n - 1}}} \right]$ is a natural mumber

This shows that $(a-b)$ is a factor of $\left(a^{n}-b^{n}\right)$, where $n$ is a positive integer.

Similar Questions

If the constant term in the expansion of $\left(1+2 x-3 x^3\right)\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9$ is $p$, then $108$ p is equal to....................

  • [JEE MAIN 2024]

The term independent of $x$ in ${\left[ {\sqrt{\frac{ x }{3}} + \frac{{\sqrt 3 }}{{{x^2}}}} \right]^{10}}$ is

In the expansion of ${(1 + 3x + 2{x^2})^6}$ the coefficient of ${x^{11}}$ is

The coefficient of ${x^{ - 9}}$ in the expansion of ${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^9}$ is

If the greatest value of the term independent of $^{\prime}x^{\prime}$ in the expansion of $\left(x \sin \alpha+a \frac{\cos \alpha}{x}\right)^{10}$ is $\frac{10 !}{(5 !)^{2}}$, then the value of $' a^{\prime}$ is equal to:

  • [JEE MAIN 2021]