The term independent of $x$ in the expansion ${\left( {{x^2} - \frac{1}{{3x}}} \right)^9}$ is
$\frac{{28}}{{81}}$
$\frac{{28}}{{243}}$
$ - \frac{{28}}{{243}}$
$ - \frac{{28}}{{81}}$
Evaluate $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$
If ${x^4}$ occurs in the ${r^{th}}$ term in the expansion of ${\left( {{x^4} + \frac{1}{{{x^3}}}} \right)^{15}}$, then $r = $
If for positive integers $r > 1,n > 2$ the coefficient of the ${(3r)^{th}}$ and ${(r + 2)^{th}}$ powers of $x$ in the expansion of ${(1 + x)^{2n}}$ are equal, then
If the greatest value of the term independent of $^{\prime}x^{\prime}$ in the expansion of $\left(x \sin \alpha+a \frac{\cos \alpha}{x}\right)^{10}$ is $\frac{10 !}{(5 !)^{2}}$, then the value of $' a^{\prime}$ is equal to:
If the term independent of $x$ in the exapansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$ is $k,$ then $18 k$ is equal to