The term independent of $x$ in the expansion ${\left( {{x^2} - \frac{1}{{3x}}} \right)^9}$ is

  • A

    $\frac{{28}}{{81}}$

  • B

    $\frac{{28}}{{243}}$

  • C

    $ - \frac{{28}}{{243}}$

  • D

    $ - \frac{{28}}{{81}}$

Similar Questions

Evaluate $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$

If ${x^4}$ occurs in the ${r^{th}}$ term in the expansion of ${\left( {{x^4} + \frac{1}{{{x^3}}}} \right)^{15}}$, then $r = $

If for positive integers $r > 1,n > 2$ the coefficient of the ${(3r)^{th}}$ and ${(r + 2)^{th}}$ powers of $x$ in the expansion of ${(1 + x)^{2n}}$ are equal, then

  • [AIEEE 2002]

If the greatest value of the term independent of $^{\prime}x^{\prime}$ in the expansion of $\left(x \sin \alpha+a \frac{\cos \alpha}{x}\right)^{10}$ is $\frac{10 !}{(5 !)^{2}}$, then the value of $' a^{\prime}$ is equal to:

  • [JEE MAIN 2021]

If the term independent of $x$ in the exapansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$ is $k,$ then $18 k$ is equal to

  • [JEE MAIN 2020]