If $A . M$. and $G M$. of two positive numbers $a$ and $b$ are $10$ and $8 , $ respectively, find the numbers.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given that  $A.M.=$ $=\frac{a+b}{2}=10$          ........$(1)$

and   $G.M.=$ $\sqrt{a b}=8$         ........$(2)$

From $(1)$ and $(2),$ we get

$a+b =20$       .........$(3)$

$ a b =64$        .........$(4)$

Putting the value of $a$ and $b$ from $(3),(4)$ in the identity $(a-b)^{2}=(a+b)^{2}-4 a b$

we get     $(a-b)^{2}=400-256=144$

or     $a-b=\pm 12$          .........$(5)$

Solving $(3)$ and $(5),$ we obtain

$a=4, b=16 \text { or } a=16, b=4$

Thus, the numbers $a$ and $b$ are $4,16$ or $16,4$ respectively.

Similar Questions

The product of three consecutive terms of a $G.P.$ is $512$. If $4$ is added to each of the first and the second of these terms, the three terms now form an $A.P.$ Then the sum of the original three terms of the given $G.P.$ is

  • [JEE MAIN 2019]

If the arithmetic mean of two numbers $a$ and $b, a>b>0$, is five times their geometric mean, then $\frac{{a + b}}{{a - b}}$ is equal to

  • [JEE MAIN 2017]

The minimum value of the sum of real numbers $a^{-5}, a^{-4}, 3 a^{-3}, 1, a^8$ and $a^{10}$ with $a>0$ is

  • [IIT 2011]

The sum of three numbers in $G.P.$ is $56.$ If we subtract $1,7,21$ from these numbers in that order, we obtain an arithmetic progression. Find the numbers.

If $a,\,b,\;c$ are in $A.P.$ and ${a^2},\;{b^2},\;{c^2}$ are in $H.P.$, then

  • [IIT 1977]