If $A=\{-1,1\},$ find $A \times A \times A.$
If is known that for any non-empty set $A, A \times A \times A$ is defined as
$A \times A \times A=\{(a, b, c): a, b, c \in A\}$
It is given that $A=\{-1,1\}$
$\therefore A \times A \times A=\left\{\begin{array}{l}(-1-1,-1),(-1,-1,1),(-1,1,-1),(-1,1,1), \\ (1,-1,-1),(1,-1,1),(1,1,-1),(1,1,1)\end{array}\right\}$
If $A \times B=\{(a, x),(a, y),(b, x),(b, y)\} .$ Find $A$ and $B$
If $R$ is the set of all real numbers, what do the cartesian products $R \times R$ and $R \times R \times R$ represent?
Let $A, B, C$ are three sets such that $n(A \cap B) = n(B \cap C) = n(C \cap A) = n(A \cap B \cap C) = 2$, then $n((A × B) \cap (B × C)) $ is equal to -
If $G =\{7,8\}$ and $H =\{5,4,2\},$ find $G \times H$ and $H \times G$.
If $P,Q$ and $R$ are subsets of a set $A$, then $R × (P^c \cup Q^c)^c =$