If $A=\{-1,1\},$ find $A \times A \times A.$
If is known that for any non-empty set $A, A \times A \times A$ is defined as
$A \times A \times A=\{(a, b, c): a, b, c \in A\}$
It is given that $A=\{-1,1\}$
$\therefore A \times A \times A=\left\{\begin{array}{l}(-1-1,-1),(-1,-1,1),(-1,1,-1),(-1,1,1), \\ (1,-1,-1),(1,-1,1),(1,1,-1),(1,1,1)\end{array}\right\}$
$A = \{1, 2, 3\}$ and $B = \{3, 8\}$, then $(A \cup B) × (A \cap B)$ is
The solution set of $8x \equiv 6(\bmod 14),\,x \in Z$, are
If $(1, 3), (2, 5)$ and $(3, 3)$ are three elements of $A × B$ and the total number of elements in $A \times B$ is $6$, then the remaining elements of $A \times B$ are
If $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\},$ then $(A -B) × (B -C)$ is
If $A \times B=\{(a, x),(a, y),(b, x),(b, y)\} .$ Find $A$ and $B$