If $A=\{-1,1\},$ find $A \times A \times A.$
If is known that for any non-empty set $A, A \times A \times A$ is defined as
$A \times A \times A=\{(a, b, c): a, b, c \in A\}$
It is given that $A=\{-1,1\}$
$\therefore A \times A \times A=\left\{\begin{array}{l}(-1-1,-1),(-1,-1,1),(-1,1,-1),(-1,1,1), \\ (1,-1,-1),(1,-1,1),(1,1,-1),(1,1,1)\end{array}\right\}$
Let $A = \{1, 2, 3, 4, 5\}; B = \{2, 3, 6, 7\}$. Then the number of elements in $(A × B) \cap (B × A)$ is
If $P,Q$ and $R$ are subsets of a set $A$, then $R × (P^c \cup Q^c)^c =$
If $A = \{2, 3, 5\}, B = \{2, 5, 6\},$ then $(A -B) × (A \cap B)$ is
Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$A \times(B \cup C)$
If the set $A$ has $3$ elements and the set $B=\{3,4,5\},$ then find the number of elements in $( A \times B ).$