If the set $A$ has $p$ elements, $B$ has $q$ elements, then the number of elements in $A × B$ is
$p + q$
$p + q + 1$
$pq$
${p^2}$
Let $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\} .$ Verify that
$A \times(B \cap C)=(A \times B) \cap(A \times C)$
If $A = \{ 2,\,4,\,5\} ,\,\,B = \{ 7,\,\,8,\,9\} ,$ then $n(A \times B)$ is equal to
If $G =\{7,8\}$ and $H =\{5,4,2\},$ find $G \times H$ and $H \times G$.
Let $A = \{1, 2, 3, 4, 5\}; B = \{2, 3, 6, 7\}$. Then the number of elements in $(A × B) \cap (B × A)$ is
If the set $A$ has $3$ elements and the set $B=\{3,4,5\},$ then find the number of elements in $( A \times B ).$