જો $A=\{-1,1\},$ તો $A \times A \times A$ મેળવો.
If is known that for any non-empty set $A, A \times A \times A$ is defined as
$A \times A \times A=\{(a, b, c): a, b, c \in A\}$
It is given that $A=\{-1,1\}$
$\therefore A \times A \times A=\left\{\begin{array}{l}(-1-1,-1),(-1,-1,1),(-1,1,-1),(-1,1,1), \\ (1,-1,-1),(1,-1,1),(1,1,-1),(1,1,1)\end{array}\right\}$
જો $A, B, C$ એ એવા ત્રણ ગણ છે કે જેથી $n(A \cap B) = n(B \cap C) = n(C \cap A) = n(A \cap B \cap C) = 2$ થાય તો $n((A × B) \cap (B × C)) $ =
જો $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\}$, તો $(A -B) × (B -C)$ મેળવો.
જો $A = \{2, 3, 5\}, B = \{2, 5, 6\},$ તો $(A -B) × (A \cap B)$ મેળવો.
જો $(x+1, y-2)=(3,1),$ તો $\mathrm{x}$ અને $\mathrm{y}$ ની કિંમત શોધો.
જો ગણ $A$ માં $p$ ઘટકો,ગણ $B$ માં $q$ ઘટકો હોય તો $A × B$ માં . . . ઘટકો છે.