જો $A=\{-1,1\},$ તો $A \times A \times A$ મેળવો.
If is known that for any non-empty set $A, A \times A \times A$ is defined as
$A \times A \times A=\{(a, b, c): a, b, c \in A\}$
It is given that $A=\{-1,1\}$
$\therefore A \times A \times A=\left\{\begin{array}{l}(-1-1,-1),(-1,-1,1),(-1,1,-1),(-1,1,1), \\ (1,-1,-1),(1,-1,1),(1,1,-1),(1,1,1)\end{array}\right\}$
જો બે ગણ $A$ અને $B$ માં $99$ ઘટકો સામાન્ય છે, તો $A \times B$ અને $B \times A$ ના સામાન્ય ઘટકોની સંખ્યા મેળવો.
જો $A=\{1,2,3\}, B=\{3,4\}$ અને $C=\{4,5,6\},$ તો શોધો. $A \times(B \cap C)$
નીચે આપેલાં વિધાનોમાંથી કયું વિધાન સત્ય છે અને કયું વિધાન અસત્ય છે તે જણાવો તથા અસત્ય વિધાન સત્ય બને તે રીતે ફરી લખો : જો $A=\{1,2\}, B=\{3,4\},$ તો $A \times\{B \cap \varnothing\}=\varnothing$ છે.
જો $G =\{7,8\}$ અને $H =\{5,4,2\},$ તો $G \times H$ અને $H \times G$ શોધો.
જો ગણ $A$ માં $3$ ઘટકો હોય અને ગણ $B=\{3,4,5\},$ તો $( A \times B )$ ના ઘટકોની સંખ્યા શોધો.