यदि $A =\{-1,1\},$ तो $A \times A \times A$ ज्ञात कीजिए।
If is known that for any non-empty set $A, A \times A \times A$ is defined as
$A \times A \times A=\{(a, b, c): a, b, c \in A\}$
It is given that $A=\{-1,1\}$
$\therefore A \times A \times A=\left\{\begin{array}{l}(-1-1,-1),(-1,-1,1),(-1,1,-1),(-1,1,1), \\ (1,-1,-1),(1,-1,1),(1,1,-1),(1,1,1)\end{array}\right\}$
बतलाइए कि निम्नलिखित कथनों में से प्रत्येक सत्य है अथवा असत्य है। यदि कथन असत्य है, तो दिए गए कथन को सही बना कर लिखिए।
यदि $A$ और $B$ अरिक्त समुच्चय हैं, तो $A \times B$ क्रमित युग्मों $(x, y)$ का एक अरिक्त समुच्चय है, इस प्रकार कि $x \in A$ तथा $y \in B$.
यदि $R$ समस्त वास्तविक संख्याओं का समुच्चय है, तो कार्तीय गुणन $R \times R$ और $R \times R \times R$ क्या निरूपित करते हैं ?
मान लीजिए कि $A =\{1,2,3\}, B =\{3,4\}$ और $C =\{4,5,6\} .$ निम्नलिखित ज्ञात कीजिए
$(A \times B) \cap(A \times C)$
यदि $A \times B =\{(p, q),(p, r),(m, q),(m, r)\},$ तो $A$ और $B$ को ज्ञात कीजिए।
यदि $G =\{7,8\}$ और $H =\{5,4,2\},$ तो $G \times H$ और $H \times G$ ज्ञात कीजिए।