જો $\mathrm{a, b, c}$ પૈકી પ્રત્યેક બે અસમાન અને પ્રત્યેક ધન હોય, તો સાબિત કરો કે નિશ્ચાયક $\Delta=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ નું મૂલ્ય ઋણ છે.
Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$ to the given determinant, we get
$\Delta = \left| {\begin{array}{*{20}{l}}
{a + b + c}&b&c \\
{a + b + c}&c&a \\
{a + b + c}&a&b
\end{array}} \right| = (a + b + c)\left| {\begin{array}{*{20}{c}}
1&b&c \\
1&c&a \\
1&a&b
\end{array}} \right|$
${ = (a + b + c)\left| {\begin{array}{*{20}{c}}
1&b&c \\
0&{c - b}&{a - c} \\
0&{a - b}&{b - c}
\end{array}} \right|}$ ${{\text{(Applying }}{{\text{R}}_2} \to {{\text{R}}_2} - {{\text{R}}_1},{\text{ and }}{{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_1})}$
$ = (a + b + c)[(c - b)(b - c) - (a - c)(a - b)]$ ${\text{(Expanding along }}{{\text{C}}_1}{\text{ ) }}$
$ = (a + b + c)\left( { - {a^2} - {b^2} - {c^2} + ab + bc + ca} \right)$
which is negative (since $\left.a+b+c>0 \text { and }(a-b)^{2}+(b-c)^{2}+(c-a)^{2}>0\right)$
જો ${U_n} = \left| {\,\begin{array}{*{20}{c}}n&1&5\\{{n^2}}&{2N + 1}&{2N + 1}\\{{n^3}}&{3{N^2}}&{3N}\end{array}\,} \right|$ તો $\sum\limits_{n = 1}^N {{U_n},} $ મેળવો.
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\{bc}&{ca}&{ab}\\{b + c}&{c + a}&{a + b}\end{array}\,} \right|$ =
$\left| {\,\begin{array}{*{20}{c}}1&{1 + ac}&{1 + bc}\\1&{1 + ad}&{1 + bd}\\1&{1 + ae}&{1 + be}\end{array}\,} \right| = $
$\left|\begin{array}{lll}(a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3)(a+4) & a+4 & 1\end{array}\right|$ નું મૂલ્ય ............ છે.
જો $\omega $ એ એકનું કાલ્પનિક બીજ હોય , તો $\left| {\,\begin{array}{*{20}{c}}2&{2\omega }&{ - {\omega ^2}}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $