If $\mathrm{a, b, c}$ are in $\mathrm{A.P}$, find value of

$\left|\begin{array}{ccc}
2 y+4 & 5 y+7 & 8 y+a \\
3 y+5 & 6 y+8 & 9 y+b \\
4 y+6 & 7 y+9 & 10 y+c
\end{array}\right|$

  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    $-1$

Similar Questions

The value of $x$  obtained from the equation $\left| {\,\begin{array}{*{20}{c}}{x + \alpha }&\beta &\gamma \\\gamma &{x + \beta }&\alpha \\\alpha &\beta &{x + \gamma }\end{array}\,} \right| = 0$ will be

The value of the determinant $\left| {\,\begin{array}{*{20}{c}}a&{a\, + \,b}&{a\, + \,2b}\\{a\, + \,2b}&a&{a\, + \,b}\\{a\, + \,b}&{a\, + \,2b}&a\end{array}\,} \right|$ is

Prove that $\left|\begin{array}{ccc}a & a+b & a+b+c \\ 2 a & 3 a+2 b & 4 a+3 b+2 c \\ 3 a & 6 a+3 b & 10 a+6 b+3 c\end{array}\right|=a^{3}$

Let $a-2 b+c=1$

If $f(x)=\left|\begin{array}{lll}{x+a} & {x+2} & {x+1} \\ {x+b} & {x+3} & {x+2} \\ {x+c} & {x+4} & {x+3}\end{array}\right|,$ then

  • [JEE MAIN 2020]

If $a,b,c$ are positive integers, then the determinant $\Delta = \left| {\,\begin{array}{*{20}{c}}{{a^2} + x}&{ab}&{ac}\\{ab}&{{b^2} + x}&{bc}\\{ac}&{bc}&{{c^2} + x}\end{array}\,} \right|$ is divisible by