If the minimum and the maximum values of the function $f :\left[\frac{\pi}{4}, \frac{\pi}{2}\right] \rightarrow R ,$ defined by : 

$f (\theta)=\left|\begin{array}{ccc}-\sin ^{2} \theta & -1-\sin ^{2} \theta & 1 \\ -\cos ^{2} \theta & -1-\cos ^{2} \theta & 1 \\ 12 & 10 & -2\end{array}\right|$ are $m$ and $M$ respectively, then the ordered pair $( m , M )$ is equal to

  • [JEE MAIN 2020]
  • A

    $(0,4)$

  • B

    $(-4,4)$

  • C

    $(0,2 \sqrt{2})$

  • D

    $(-4,0)$

Similar Questions

If $\left| {\begin{array}{*{20}{c}}
  {{a^2}}&{{b^2}}&{{c^2}} \\ 
  {{{(a + \lambda )}^2}}&{{{(b + \lambda )}^2}}&{{{(c + \lambda )}^2}} \\ 
  {{{(a - \lambda )}^2}}&{{{(b - \lambda )}^2}}&{{{(c - \lambda )}^2}} 
\end{array}} \right|$ $ = \,k\lambda \,\,\left| {{\mkern 1mu} {\mkern 1mu} \begin{array}{*{20}{c}}
  {{a^2}}&{{b^2}}&{{c^2}} \\
  a&b&c \\
  1&1&1
\end{array}} \right|,\lambda \, \ne \,0$ then $k$ is equal to

  • [JEE MAIN 2014]

By using properties of determinants, show that:

$\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}$

The value of $\left| {\,\begin{array}{*{20}{c}}{441}&{442}&{443}\\{445}&{446}&{447}\\{449}&{450}&{451}\end{array}\,} \right|$ is

By using properties of determinants, show that:

$\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(4-x)^{2}$

If $A$, $B$ and $C$ are the angles of a triangle then the value of the determinant

$\left| {\begin{array}{*{20}{c}}
  { - 1 + \cos B}&{\cos C + \cos B}&{\cos B} \\ 
  {\cos C + \cos A}&{ - 1 + \cos A}&{\cos A} \\ 
  { - 1 + \cos B}&{ - 1 + \cos A}&{ - 1} 
\end{array}} \right|$