If $\mathrm{a, b, c},$ are in $\mathrm{A.P}$, then the determinant

$\left|\begin{array}{lll}x+2 & x+3 & x+2 a \\ x+3 & x+4 & x+2 b \\ x+4 & x+5 & x+2 c\end{array}\right|$ is

  • A

    $1$

  • B

    $x$

  • C

    $2x$

  • D

    $0$

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}{{b^2} - ab}&{b - c}&{bc - ac}\\{ab - {a^2}}&{a - b}&{{b^2} - ab}\\{bc - ac}&{c - a}&{ab - {a^2}}\end{array}\,} \right| = $

Let $\alpha $, $\beta$ $\gamma$, $\delta$ are distinct imaginary roots of

$z^5=1$ then value of $\left| {\begin{array}{*{20}{c}}
  {{e^\alpha }}&{{e^{2\alpha }}}&{{e^{3\alpha  + 1}}}&{ - {e^{ - \delta }}} \\ 
  {{e^\beta }}&{{e^{2\beta }}}&{{e^{3\beta  + 1}}}&{ - {e^{ - \delta }}} \\ 
  {{e^\gamma }}&{{e^{2\gamma }}}&{{e^{3\gamma  + 1}}}&{ - {e^{ - \delta }}} 
\end{array}} \right|$

If $x$ is a positive integer, then $\Delta = \left| {\,\begin{array}{*{20}{c}}{x!}&{(x + 1)!}&{(x + 2)!}\\{(x + 1)!}&{(x + 2)!}&{(x + 3)!}\\{(x + 2)!}&{(x + 3)!}&{(x + 4)!}\end{array}\,} \right|$ is equal to

Evaluate $\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \operatorname{csin} \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$

By using properties of determinants, show that:

$\left|\begin{array}{ccc}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & c b & c^{2}+1\end{array}\right|=1+a^{2}+b^{2}+c^{2}$