If $\left| {\,\begin{array}{*{20}{c}}{y + z}&{x - z}&{x - y}\\{y - z}&{z - x}&{y - x}\\{z - y}&{z - x}&{x + y}\end{array}\,} \right| = k\,xyz$, then the value of $k $ is
$2$
$4$
$6$
$8$
The value of $\sum\limits_{n = 1}^N {{U_n},} $ if ${U_n} = \left| {\,\begin{array}{*{20}{c}}n&1&5\\{{n^2}}&{2N + 1}&{2N + 1}\\{{n^3}}&{3{N^2}}&{3N}\end{array}\,} \right|$ is
By using properties of determinants, show that:
$\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}$
$\left| {\,\begin{array}{*{20}{c}}{x + 1}&{x + 2}&{x + 4}\\{x + 3}&{x + 5}&{x + 8}\\{x + 7}&{x + 10}&{x + 14}\end{array}\,} \right| = $
The value of $\left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + 2b}\\{a + 2b}&a&{a + b}\\{a + b}&{a + 2b}&a\end{array}\,} \right|$ is equal to
$\left| {\,\begin{array}{*{20}{c}}{{b^2} - ab}&{b - c}&{bc - ac}\\{ab - {a^2}}&{a - b}&{{b^2} - ab}\\{bc - ac}&{c - a}&{ab - {a^2}}\end{array}\,} \right| = $