If $n(A) = 3$ and $n(B) = 6$ and $A \subseteq B$. Then the number of elements in $A \cap B$ is equal to

  • A

    $3$

  • B

    $9$

  • C

    $6$

  • D

    None of these

Similar Questions

If $A$ and $B$ are two sets such that $A \subset B$, then what is $A \cup B ?$

If $A$ and $B$ are two sets, then $A \cup B = A \cap B$ iff

Let $A = \{ (x,\,y):y = {e^x},\,x \in R\} $, $B = \{ (x,\,y):y = {e^{ - x}},\,x \in R\} .$ Then

If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find

$B \cup D$

Let $\mathrm{X}=\{\mathrm{n} \in \mathrm{N}: 1 \leq \mathrm{n} \leq 50\} .$ If $A=\{n \in X: n \text { is a multiple of } 2\}$ and $\mathrm{B}=\{\mathrm{n} \in \mathrm{X}: \mathrm{n} \text { is a multiple of } 7\},$ then the number of elements in the smallest subset of $X$ containing both $\mathrm{A}$ and $\mathrm{B}$ is

  • [JEE MAIN 2020]