જો $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ અને $B =\{2,3,5,7\}$ હોય, તો $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ ચકાસો.
$U=\{1,2,3,4,5,6,7,8,9\}$
$A=\{2,4,6,8\}, B=\{2,3,5,7\}$
$(A \cup B)^{\prime}=\{2,3,4,5,6,7,8\}^{\prime}=\{1,9\}$
$A^{\prime} \cap B^{\prime}=\{1,3,5,7,9\} \cap\{1,4,6,8,9\}=\{1,9\}$
$\therefore(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
નીચે આપેલ વેન આકૃતિમાં છાયાંકિત પ્રદેશ નીચેનામાંથી શું દર્શાવે છે.
પ્રાકૃતિક સંખ્યાઓના ગણને સાર્વત્રિક ગણ તરીકે લઈ, નીચે આપેલા ગણના પૂરક ગણ શોધો : $\{ x:x$ એ પૂર્ણવર્ગ છે. $\} $
$U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ અને $C=\{3,4,5,6\}$ છે. $B^{\prime}$ મેળવો
ખાલી જગ્યા પૂરો : $A \cap A^{\prime}=\ldots$
$U=\{1,2,3,4,5,6\}, A=\{2,3\}$ અને $B=\{3,4,5\}.$ $A^{\prime}, B^{\prime}, A^{\prime} \cap B^{\prime}, A \cup B$ શોધો અને તે પરથી બતાવો કે $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}.$