If $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ and $B =\{2,3,5,7\} .$ Verify that
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
$U=\{1,2,3,4,5,6,7,8,9\}$
$A=\{2,4,6,8\}, B=\{2,3,5,7\}$
$(A \cap B)^{\prime}=\{2\}^{\prime}=\{1,3,4,5,6,7,8,9\}$
$A^{\prime} \cup B^{\prime}=\{1,3,5,7,9\} \cup\{1,4,6,8,9\}=\{1,3,4,5,6,7,8,9\}$
$\therefore(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
Let $U=\{1,2,3,4,5,6\}, A=\{2,3\}$ and $B=\{3,4,5\}$
Find $A^{\prime}, B^{\prime}, A^{\prime} \cap B^{\prime}, A \cup B$ and hence show that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
If $A$ and $B$ are two given sets, then $A \cap {(A \cap B)^c}$ is equal to
Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find
$(B-C)^{\prime}$
If $A$ and $B$ be any two sets, then $(A \cap B)'$ is equal to
Taking the set of natural numbers as the universal set, write down the complements of the following sets:
$\{ x:x$ is a natural number divisible by $ 3 $ and $5\} $