यदि $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ और $B =\{2,3,5,7\},$ तो सत्यापित कीजिए कि
$( A \cap B )^{\prime}= A ^{\prime} \cup B ^{\prime}$
$U=\{1,2,3,4,5,6,7,8,9\}$
$A=\{2,4,6,8\}, B=\{2,3,5,7\}$
$(A \cap B)^{\prime}=\{2\}^{\prime}=\{1,3,4,5,6,7,8,9\}$
$A^{\prime} \cup B^{\prime}=\{1,3,5,7,9\} \cup\{1,4,6,8,9\}=\{1,3,4,5,6,7,8,9\}$
$\therefore(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
प्राकृत संख्याओं के समुच्चय को सार्वत्रिक समुच्चय मानते हुए, निम्नलिखित समुच्चयों के पूरक लिखिए
$\{x: x$ एक प्राकृत सम संख्या है$\} $
माना $U = \{ 1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9,\,10\} $, $A = \{ 1,\,2,\,5\} ,\,B = \{ 6,\,7\} $, तब $A \cap B'$ है
मान लीजिए कि $U =\{1,2,3,4,5,6,7,8,9\}, A =\{1,2,3,4\}, B =\{2,4,6,8\}$ और $C =\{3,4,5,6\}$ तो निम्नलिखित ज्ञात कीजिए
$(A \cup C)^{\prime}$
माना $ A$ और $ B$ समष्टीय समुच्चय के दो समुच्चय है, तब $A - B$ =
मान लीजिए कि $U =\{1,2,3,4,5,6,7,8,9\}, A =\{1,2,3,4\}, B =\{2,4,6,8\}$ और $C =\{3,4,5,6\}$ तो निम्नलिखित ज्ञात कीजिए
$(B-C)^{\prime}$