બે ગણું $X$ અને $Y$ એવા છે કે ગણ $X$ માં $40$ ઘટકો, $X \cup Y$ માં $60$ ઘટકો અને $X$ $\cap\, Y$ માં $10$ ઘટકો હોય, તો $Y$ માં કેટલા ઘટકો હશે?
It is given that:
$n(X)=40, n(X \cup Y)=60, n(X \cap Y)=10$
We know that:
$n(X \cup Y)=n(X)+n(Y)-n(X \cap Y)$
$\therefore 60=40+n(Y)-10$
$\therefore n(Y)=60-(40-10)=30$
Thus, the set $Y$ has $30$ elements.
જો ગણ $A$ અને $B$ માટે$A = \{ (x,\,y):y = {e^x},\,x \in R\} $; $B = \{ (x,\,y):y = x,\,x \in R\} ,$ હોય તો . .
અહી $A =\{1,2,3,4,5,6,7\}$ અને $B =\{3,6,7,9\}$ આપેલ છે. તો ગણ $\{ C \subseteq A : C \cap B \neq \phi\}$ ની સભ્ય સંખ્યા મેળવો.
જો $A \cap B = B,$ તો . .
$V =\{a, e, i, o, u\}$ અને $B =\{a, i, k, u\}$ છે. $V -B$ અને $B -V$ શોધો.
જો $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ તો મેળવો : $C-A$