The inverse function of $f(\mathrm{x})=\frac{8^{2 \mathrm{x}}-8^{-2 \mathrm{x}}}{8^{2 \mathrm{x}}+8^{-2 \mathrm{x}}}, \mathrm{x} \in(-1,1),$ is

  • [JEE MAIN 2020]
  • A

    $\frac{1}{4}\left(\log _{8} e\right) \log _{e}\left(\frac{1-x}{1+x}\right)$

  • B

    $\frac{1}{4} \log _{e}\left(\frac{1-x}{1+x}\right)$

  • C

    $\frac{1}{4}\left(\log _{8} e\right) \log _{e}\left(\frac{1+x}{1-x}\right)$

  • D

    $\frac{1}{4} \log _{e}\left(\frac{1+x}{1-x}\right)$

Similar Questions

If $f\left( x \right) = {\left( {2x - 3\pi } \right)^5} + \frac{4}{3}x + \cos x$ and $g$ is the inverse of $f$, then $g'\left( {2\pi } \right)$  = ?

Let $f: X \rightarrow Y$ be an invertible function. Show that the inverse of $f^{-1}$ is $f$, i.e., $\left(f^{-1}\right)^{-1}=f$.

If $f(x) = 3x - 5$, then ${f^{ - 1}}(x)$

  • [IIT 1998]

If $f$ be the greatest integer function and $g$ be the modulus function, then $(gof)\left( { - \frac{5}{3}} \right) - (fog)\left( { - \frac{5}{3}} \right) = $

Which of the following function is invertible