If $E$ and $F$ are events such that $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2}$ and $P(E$ and $F )=\frac{1}{8},$ find : $P ( E$ or  $F )$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here, $P ( E )=\frac{1}{4}$,  $P ( F )=\frac{1}{2},$ and  $P ( E$ and $F )=\frac{1}{8}$

We know that $P ( E$ and $F )= P ( E )+ P ( F )- P ( E$ and  $F )$

$\therefore P(E $ or  $F)=\frac{1}{4}+\frac{1}{2}-\frac{1}{8}$ $=\frac{2+4-1}{8}=\frac{5}{8}$

Similar Questions

For the three events $A, B$ and $C, P$ (exactly one of the events $A$ or $B$ occurs) = $P$ (exactly one of the events $B$ or $C$ occurs)= $P$ (exactly one of the events $C$ or $A$ occurs)= $p$ and $P$ (all the three events occur simultaneously) $ = {p^2},$ where $0 < p < 1/2$. Then the probability of at least one of the three events $A, B$ and $C$ occurring is

  • [IIT 1996]

Twelve tickets are numbered $1$ to $12$. One ticket is drawn at random, then the probability of the number to be divisible by $2$ or $3$, is

The probability that a leap year selected at random contains either $53$ Sundays or $53 $ Mondays, is

An unbiased die is thrown twice. Let the event $A$ be 'odd number on the first throw' and $B$ the event 'odd number on the second throw '. Check the independence of the events $A$ and $B$.

Given two mutually exclusive events $A$ and $B$ such that $P(A) = 0.45$ and $P(B) = 0.35,$ then $P (A$ or $B ) =$