If $E$ and $F$ are events such that $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2}$ and $P(E$ and $F )=\frac{1}{8},$ find : $P ( E$ or $F )$
Here, $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2},$ and $P ( E$ and $F )=\frac{1}{8}$
We know that $P ( E$ and $F )= P ( E )+ P ( F )- P ( E$ and $F )$
$\therefore P(E $ or $F)=\frac{1}{4}+\frac{1}{2}-\frac{1}{8}$ $=\frac{2+4-1}{8}=\frac{5}{8}$
$\mathrm{A}$ die is thrown. If $\mathrm{E}$ is the event $'$ the number appearing is a multiple of $3'$ and $F$ be the event $'$ the number appearing is even $^{\prime}$ then find whether $E$ and $F$ are independent ?
Let $A$ and $B$ be independent events such that $\mathrm{P}(\mathrm{A})=\mathrm{p}, \mathrm{P}(\mathrm{B})=2 \mathrm{p} .$ The largest value of $\mathrm{p}$, for which $\mathrm{P}$ (exactly one of $\mathrm{A}, \mathrm{B}$ occurs $)=\frac{5}{9}$, is :
One card is drawn randomly from a pack of $52$ cards, then the probability that it is a king or spade is
Given $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$. Find $P(A $ or $B),$ if $A$ and $B$ are mutually exclusive events.
A die marked $1,\,2,\,3$ in red and $4,\,5,\,6$ in green is tossed. Let $A$ be the event, $'$ the number is even,$'$ and $B$ be the event, 'the number is red'. Are $A$ and $B$ independent?