If $P(A) = 2/3$, $P(B) = 1/2$ and ${\rm{ }}P(A \cup B) = 5/6$ then events $A$ and $B$ are

  • A

    Mutually exclusive

  • B

    Independent as well as mutually exhaustive

  • C

    Independent

  • D

    Dependent only on $A$

Similar Questions

Three coins are tossed simultaneously. Consider the event $E$ ' three heads or three tails', $\mathrm{F}$ 'at least two heads' and $\mathrm{G}$ ' at most two heads '. Of the pairs $(E,F)$, $(E,G)$ and $(F,G)$, which are independent? which are dependent ?

In a hostel, $60 \%$ of the students read Hindi newspaper, $40 \%$ read English newspaper and $20 \%$ read both Hindi and English newspapers. A student is selected at random. If she reads English newspaper, find the probability that she reads Hindi newspaper.

Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that First ball is black and second is red.

 $\mathrm{A}$ die is thrown. If $\mathrm{E}$ is the event $'$ the number appearing is a multiple of $3'$ and $F$ be the event $'$ the number appearing is even $^{\prime}$ then find whether $E$ and $F$ are independent ?

Let $X$ and $Y$ are two events such that $P(X \cup Y=P)\,(X \cap Y).$

Statement $1:$ $P(X \cap Y' = P)\,(X' \cap Y = 0).$

Statement $2:$ $P(X) + P(Y = 2)\,P\,(X \cap Y)$

  • [AIEEE 2012]