If $E$ and $F$ are events such that $P(E)=\frac{1}{4}$, $P(F)=\frac{1}{2}$ and $P(E$ and $F )=\frac{1}{8},$ find $:$ $P($ not $E$ and not $F)$.
Here, $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2},$ and $P ( E $ and $F )=\frac{1}{8}$
From $P ( E$ or $F )= P (E \cup F)=\frac{5}{8}$
We have $( E \cup F ) ^{\prime}=\left( E ^{\prime} \cap F ^{\prime}\right)$ $[$ By De Morgan's law $]$
$\therefore $ $( E ^{\prime} \cap F^{\prime})= P ( E \cup F ) ^{\prime}$
Now, $P ( E \cap F )^{\prime} =1- P ( E \cup F )$ $=1-\frac{5}{8}=\frac{3}{8}$
$\therefore $ $P(E^{\prime} \cap F^{\prime})=\frac{3}{8}$
Thus, $P($ not $E$ not $F)=\frac{3}{8}$
An integer is chosen at random from the integers $\{1,2,3, \ldots \ldots . .50\}$. The probability that the chosen integer is a multiple of atleast one of $4,6$ and $7$ is
$A$ and $B$ are two events such that $P(A)=0.54$, $P(B)=0.69$ and $P(A \cap B)=0.35.$ Find $P \left( B \cap A ^{\prime}\right)$.
The probability that at least one of the events $A$ and $B$ occurs is $3/5$. If $A$ and $B$ occur simultaneously with probability $1/5$, then $P(A') + P(B')$ is
$A$ and $B$ are two events such that $P(A)=0.54$, $P(B)=0.69$ and $P(A \cap B)=0.35.$ Find $P \left( A \cap B ^{\prime}\right)$ .
Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Both Anil and Ashima will not qualify the examination.