If $E$ and $F$ are events such that $P(E)=\frac{1}{4}$,  $P(F)=\frac{1}{2}$ and $P(E$ and $F )=\frac{1}{8},$ find $:$ $P($ not $E$ and not $F)$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here, $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2},$ and $P ( E $ and $F )=\frac{1}{8}$

From $P ( E$ or $F )= P (E \cup F)=\frac{5}{8}$

We have $( E \cup F ) ^{\prime}=\left( E ^{\prime} \cap F ^{\prime}\right)$     $[$ By De Morgan's law $]$ 

$\therefore  $ $( E ^{\prime} \cap F^{\prime})= P ( E \cup F ) ^{\prime}$

Now, $P ( E \cap F )^{\prime} =1- P ( E \cup F )$ $=1-\frac{5}{8}=\frac{3}{8}$

$\therefore $ $P(E^{\prime} \cap F^{\prime})=\frac{3}{8}$

Thus, $P($ not $E$ not  $F)=\frac{3}{8}$

Similar Questions

Let $A$ and $B$ be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that $A$ or $B$ occurs is $\frac{1}{2}$ then the probability of both of them occur together is

  • [JEE MAIN 2020]

In a city $20\%$ persons read English newspaper, $40\%$ read Hindi newspaper and $5\%$ read both newspapers. The percentage of non-reader either paper is

In a hostel, $60 \%$ of the students read Hindi newspaper, $40 \%$ read English newspaper and $20 \%$ read both Hindi and English newspapers. A student is selected at random Find the probability that she reads neither Hindi nor English newspapers.

Check whether the following probabilities $P(A)$ and $P(B)$ are consistently defined $P ( A )=0.5$,  $ P ( B )=0.7$,  $P ( A \cap B )=0.6$

Probability that a student will succeed in $IIT$ entrance test is $0.2$ and that he will succeed in Roorkee entrance test is $0.5$. If the probability that he will be successful at both the places is $0.3$, then the probability that he does not succeed at both the places is