If $E$ and $F$ are events such that $P(E)=\frac{1}{4}$, $P(F)=\frac{1}{2}$ and $P(E$ and $F )=\frac{1}{8},$ find $:$ $P($ not $E$ and not $F)$.
Here, $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2},$ and $P ( E $ and $F )=\frac{1}{8}$
From $P ( E$ or $F )= P (E \cup F)=\frac{5}{8}$
We have $( E \cup F ) ^{\prime}=\left( E ^{\prime} \cap F ^{\prime}\right)$ $[$ By De Morgan's law $]$
$\therefore $ $( E ^{\prime} \cap F^{\prime})= P ( E \cup F ) ^{\prime}$
Now, $P ( E \cap F )^{\prime} =1- P ( E \cup F )$ $=1-\frac{5}{8}=\frac{3}{8}$
$\therefore $ $P(E^{\prime} \cap F^{\prime})=\frac{3}{8}$
Thus, $P($ not $E$ not $F)=\frac{3}{8}$
Let $A$ and $B$ be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that $A$ or $B$ occurs is $\frac{1}{2}$ then the probability of both of them occur together is
In a city $20\%$ persons read English newspaper, $40\%$ read Hindi newspaper and $5\%$ read both newspapers. The percentage of non-reader either paper is
In a hostel, $60 \%$ of the students read Hindi newspaper, $40 \%$ read English newspaper and $20 \%$ read both Hindi and English newspapers. A student is selected at random Find the probability that she reads neither Hindi nor English newspapers.
Check whether the following probabilities $P(A)$ and $P(B)$ are consistently defined $P ( A )=0.5$, $ P ( B )=0.7$, $P ( A \cap B )=0.6$
Probability that a student will succeed in $IIT$ entrance test is $0.2$ and that he will succeed in Roorkee entrance test is $0.5$. If the probability that he will be successful at both the places is $0.3$, then the probability that he does not succeed at both the places is