An unbiased coin is tossed. If the result is a head, a pair of unbiased dice is rolled and the number obtained by adding the numbers on the two faces is noted. If the result is a tail, a card from a well shuffled pack of eleven cards numbered $2, 3, 4,.......,12$ is picked and the number on the card is noted. The probability that the noted number is either $7$ or $8$, is
$0.24$
$0.244$
$0.024$
None of these
If $A$ and $B$ are any two events, then $P(A \cup B) = $
If two events $A$ and $B$ are such that $P\,(A + B) = \frac{5}{6},$ $P\,(AB) = \frac{1}{3}\,$ and $P\,(\bar A) = \frac{1}{2},$ then the events $A$ and $B$ are
If $A$ and $B$ are two events such that $P\left( {A \cup B} \right) = P\left( {A \cap B} \right)$, then the incorrect statement amongst the following statements is
Events $\mathrm{A}$ and $\mathrm{B}$ are such that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ and $\mathrm{P}$ $($ not $ \mathrm{A}$ or not $\mathrm{B})=\frac{1}{4} .$ State whether $\mathrm{A}$ and $\mathrm{B}$ are independent?
An unbiased coin is tossed. If the outcome is a head then a pair of unbiased dice is rolled and the sum of the numbers obtained on the is noted. If the toss of the coin results in tail then a card from a well-shuffled pack of nine cards numbered $1, 2, 3,….., 9$ is randomly picked and the number on the card is noted. The probability that the noted number is either $7$ or $8$ is