यदि $E$ और $F$ घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{1}{4}, P ( F )=\frac{1}{2}$ और $P ( E$ और $F )=\frac{1}{8},$ तो ज्ञात कीजिए $P ( E -$ नहीं और $F-$ नहीं)।
Here, $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2},$ and $P ( E $ and $F )=\frac{1}{8}$
From $P ( E$ or $F )= P (E \cup F)=\frac{5}{8}$
We have $( E \cup F ) ^{\prime}=\left( E ^{\prime} \cap F ^{\prime}\right)$ $[$ By De Morgan's law $]$
$\therefore $ $( E ^{\prime} \cap F^{\prime})= P ( E \cup F ) ^{\prime}$
Now, $P ( E \cap F )^{\prime} =1- P ( E \cup F )$ $=1-\frac{5}{8}=\frac{3}{8}$
$\therefore $ $P(E^{\prime} \cap F^{\prime})=\frac{3}{8}$
Thus, $P($ not $E$ not $F)=\frac{3}{8}$
सिद्ध कीजिए कि यदि $E$ और $F$ दो स्वतंत्र घटनाएँ हैं तो $E$ और $F ^{\prime}$ भी स्वतंत्र होंगी।
दो दी हूई घटनाओं $A$ व $B$ के लिए $P\,(A \cap B)$ का मान है
एक अभिनत सिक्का उछाला जाता है। यदि इस पर शीर्ष प्राप्त होता है तो एक पाँसे का युग्म उछाला जाता है तथा उन पर प्राप्त संख्याओं को जोड़कर नोट कर लिया जाता है। यदि पुच्छ आता है तो $11$ पत्तों की एक गड्डी $2, 3, 4,.......,12$ में से एक पत्ता खींचा जाता है एवं उस पर अंकित संख्या को नोट किया जाता है तो इस बात की प्रायिकता कि नोट की हुई संख्या $7$ या $8$ हो, है
यदि $E$ और $F$ घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{1}{4}, P ( F )=\frac{1}{2}$ और $P ( E$ और $F )=\frac{1}{8},$ तो ज्ञात कीजिए $P ( E$ या $F )$
एक कक्षा के $60$ विद्यार्थियों में से $30$ ने एन. सी. सी. ( $NCC$ ), $32$ ने एन. एस. एस. $(NSS)$ और $24$ ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि
विद्यार्थी ने न तो एन.सी.सी. और न ही एन.एस.एस. को चुना है।