यदि $E$ और $F$ घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{1}{4}, P ( F )=\frac{1}{2}$ और $P ( E$ और $F )=\frac{1}{8},$ तो ज्ञात कीजिए $P ( E -$ नहीं और $F-$ नहीं)।
Here, $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2},$ and $P ( E $ and $F )=\frac{1}{8}$
From $P ( E$ or $F )= P (E \cup F)=\frac{5}{8}$
We have $( E \cup F ) ^{\prime}=\left( E ^{\prime} \cap F ^{\prime}\right)$ $[$ By De Morgan's law $]$
$\therefore $ $( E ^{\prime} \cap F^{\prime})= P ( E \cup F ) ^{\prime}$
Now, $P ( E \cap F )^{\prime} =1- P ( E \cup F )$ $=1-\frac{5}{8}=\frac{3}{8}$
$\therefore $ $P(E^{\prime} \cap F^{\prime})=\frac{3}{8}$
Thus, $P($ not $E$ not $F)=\frac{3}{8}$
यदि $P\,(A) = \frac{1}{4},\,\,P\,(B) = \frac{5}{8}$ तथा $P\,(A \cup B) = \frac{3}{4},$ तो $P\,(A \cap B) = $
माना एक प्रतिदश्रि समष्टि में तीन स्वेच्छ घटनायें ${E_1},{E_2}$ व ${E_3}$ हैं। निम्न में से कौन सा कथन सत्य हैं
$A$ के सत्य बोलने की प्रायिकता $\frac{4}{5}$ है जबकि $B$ के सत्य बोलने की प्रायिकता $\frac{3}{4}$ है। किसी एक तथ्य पर दोनों में विरोधाभास हो, उसकी प्रायिकता है
एक अनभिनत (unbiased) सिक्के को उछाला जाता है। चित्त आने पर अनभिनत पासों के एक युग्म को उछाला जाता है तथा उन पर आई संख्याओं का योग नोट किया जाता है। यदि सिक्के पर पट् आता है, तो $9$ कार्डो जिन पर संख्याएं $1,2,3, \ldots, 9$ अंकित हैं, की एक अच्छी प्रकार से फेंटी गई गड्डी में से एक कार्ड निकाल कर उस पर आई संख्या नोट की जाती है। इस प्रकार नोट की गई संख्या $7$ अथवा $8$ होने की प्रायिकता है
$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ ) का मान ज्ञात कीजिए।