If $p, q, r$ are in $G.P.$ and the equations, $p x^{2}+2 q x+r=0$ and $d x^{2}+2 e x+f=0$ have a common root, then show that $\frac{d}{p}, \frac{e}{q}, \frac{f}{r}$ are in $A.P.$
The equation $p x^{2}+2 q x+r=0$ has roots given by
$x=\frac{-2 q \pm \sqrt{4 q^{2}-4 r p}}{2 p}$
since $p, q, r$ are in $G.P.$ $q^{2}=p r .$ Thus $x=\frac{-q}{p}$ but $\frac{-q}{p}$ is also root of ${d{x^2} + 2ex + f = 0}$ (Why ?). Therefore
$d\left(\frac{-q}{p}\right)^{2}+2 e\left(\frac{-q}{p}\right)+f=0$
or $d q^{2}-2 e q p+f p^{2}=0$ .........$(1)$
Dividing $(1)$ by $pq^{2}$ and using $q^{2}=$ $pr,$ we get
$\frac{d}{p}-\frac{2 e}{q}+\frac{f p}{p r}=0,$ or $\quad \frac{2 e}{q}=\frac{d}{p}+\frac{f}{r}$
Hence $\frac{d}{p}, \frac{e}{q}, \frac{f}{r}$ are in $A.P.$
Let ${a_1},{a_2},{a_3}$ be any positive real numbers, then which of the following statement is not true
Let $f: R \rightarrow R$ be such that for all $\mathrm{x} \in \mathrm{R}\left(2^{1+\mathrm{x}}+2^{1-\mathrm{x}}\right), f(\mathrm{x})$ and $\left(3 ^\mathrm{x}+3^{-\mathrm{x}}\right)$ are in $A.P.$, then the minimum value of $f(x)$ is
Let $a$, $b \in R$ be such that $a$, $a + 2b$ , $2a + b$ are in $A.P$. and $(b + 1)^2$, $ab + 5$, $(a + 1)^2$ are in $G.P.$ then $(a + b)$ equals
If $a,\;b,\,c$ be in $G.P.$ and $a + x,\;b + x,\;c + x$ in $H.P.$, then the value of $x$ is ($a,\;b,\;c$ are distinct numbers)
Three numbers are in an increasing geometric progression with common ratio $\mathrm{r}$. If the middle number is doubled, then the new numbers are in an arithmetic progression with common difference $\mathrm{d}$. If the fourth term of GP is $3 \mathrm{r}^{2}$, then $\mathrm{r}^{2}-\mathrm{d}$ is equal to: